PH2

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Question} \& Marking details \& Marks Available

\hline 1 \& (a)

(b) \& \begin{tabular}{l}
(i)

(ii)

(iii)

(iv)

 \&

Attempt at sinusoid, right way up, passing within 1 mm of all dots

P and Q are in phase (1)

Amplitude of $\mathrm{P}>$ amplitude of Q (1)

Q and R are in antiphase / exactly out of phase (1)

Amplitude of $\mathrm{Q}=$ amplitude of R (1)

$$
\begin{align*}
& \frac{\lambda}{2}=0.20[\mathrm{~m}] \text { or } \lambda=0.40[\mathrm{~m}] \text { or by implication (1) } \\
& v=96 \mathrm{~m} \mathrm{~s}^{-1} \text { UNIT ecf } \\
& \frac{\lambda}{2}=0.15[\mathrm{~m}](\text { or } \lambda=0.30[\mathrm{~m}]) \text { or } v=96\left[\mathrm{~m} \mathrm{~s}^{-1}\right] \text { ecf from }(a)(\mathrm{iv}) \\
& \text { or } f=\left(\frac{4}{3}\right) 240[\mathrm{~Hz}] \text { or by implication (1) } \\
& f=320[\mathrm{~Hz}] \text { but not by cancellation of errors, ecf on } v \text { from }(a)(\text { iv }) \tag{1}
\end{align*}
$$

Question 1 total

 \&

1

2

2

2

2

[9]
\end{tabular}

\hline 2 \& (a)

(b) \& \begin{tabular}{l}
(i)

(ii)

(iii)

 \&

$\mathrm{S}_{2} \mathrm{Q}=\sqrt{\left(350^{2}+120^{2}\right)}[\mathrm{mm}]$ or equivalent (1)

Therefore $\mathrm{S}_{2} \mathrm{Q}-\mathrm{S}_{1} \mathrm{Q}=(370-350)[\mathrm{mm}]$ (1)

For any dot, path difference $=n \lambda$, or for P , path difference $=0$ or any other remark relevant to the conclusion that ...

$$
\begin{align*}
& \lambda=10[\mathrm{~mm}] \tag{1}\\
& \lambda=\left(\frac{120 \times 30}{350}\right)
\end{align*}
$$

$$
\begin{equation*}
\lambda=10 \mathrm{~mm} \text { or } 10.3 \mathrm{~mm} \text { UNIT } \tag{1}
\end{equation*}
$$

With sensor in front of source either rotate sensor [at least through 90°] or interpose array of metal rods /metal grille and rotate [at least through 90°] (1) Don't accept metal grid

Signal strength changes (1)

Accept in words or in diagram

Question 2 total

 \&

2

2

2

2

[8]
\end{tabular}

\hline
\end{tabular}

Question			Marking details	Marks Available
3	(a)	(i) (ii) (iii) (iv)	[Flat, opaque] screen / sheet/ plate / material with slits / gaps (1) Slits are parallel / vertical or equally spaced or closely spaced or many / multiple (1) $\begin{equation*} \frac{1}{400000}=\left[2.5 \times 10^{-6} \mathrm{~m}\right] \tag{1} \end{equation*}$ $2 \lambda=2.5 \times 10^{-6} \sin 25.2^{\circ}$ even with the 2 missing or mishandled Correct placing of the 2 (1) $\lambda=532 \times 10^{-9}[\mathrm{~m}]$ ecf on d only (1) $3 \times 532=2500 \sin \theta$ or equivalent ecf on λ (1) $\theta=39.7^{\circ}$ or 40° ecf on λ (1) Young's slits much further apart than slits in grating Don't accept slits much narrower or gaps are much smaller Question 3 Total	2 1 1 3 2 1 1 $[9]$
4	(a)	(i) (ii) (iii) (iv) (i) (ii) (iii)	medium 1: $2.0 \times 10^{8}\left[\mathrm{~m} \mathrm{~s}^{-1}\right]$ and medium 2: $2.5 \times 10^{8}\left[\mathrm{~m} \mathrm{~s}^{-1}\right]$ Correct use of $\sin 30^{\circ}$ seen clearly (1) Rest of argument, including use of $t=\frac{d}{v}$ [ecf on v and on value of \sin 30°, if failure to reach the stated time is noted]. $\mathrm{BD}=2.5 \times 10^{8}$ ecf $\times 2.5 \times 10^{-11}[\mathrm{~m}][=6.25 \mathrm{~mm}]$ or by implication (1) $\begin{equation*} \theta_{2}=38.7^{\circ}\left(\text { or } 39^{\circ}\right) \text { ecf on } v=2.5 \times 10^{8}\left[\mathrm{~m} \mathrm{~s}^{-1}\right] \tag{1} \end{equation*}$ $1.50 \sin 30^{\circ}=1.20 \sin \theta_{2} \quad$ (1) Therefore $\theta_{2}=38.7^{\circ}\left(\right.$ or $\left.39^{\circ}\right)$ no ecf (1) Use of $v=2.0 \times 10^{8}\left[\mathrm{~m} \mathrm{~s}^{-1}\right]$ $\begin{equation*} t=\frac{1600}{2.0 \times 10^{8}}[\mathrm{~s}] \text { ecf on } v \tag{1} \end{equation*}$ Critical angle $=76^{\circ}$ or by implication (1) $n_{\text {clad }}\left[\times \sin 90^{\circ}\right]=1.500 \sin 76^{\circ}$ ecf on 76° or by implication (1) $n_{\text {clad }}=1.455$ or 1.46 do not accept 1.45 no ecf (1) $\begin{aligned} & \frac{\mathrm{AC}}{\mathrm{AB}}=\cos 14^{\circ} \text { or equivalent or by implication } \\ & \Delta t=0.24 \mu \mathrm{~s} \text { ecf on } v \end{aligned}$ Question 4 Total	1 2 2 2 2 3 2 [14]

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Question} \& Marking details \& Marks Available \\
\hline 5 \& \begin{tabular}{l}
(a) \\
(b) \\
(c) \\
(d)
\end{tabular} \& \begin{tabular}{l}
(i) \\
(ii) \\
(iii)
\end{tabular} \& \begin{tabular}{l}
[Minimum] energy needed to release [or eject] electron from magnesium [or metal or surface or solid not atom]
\[
\begin{align*}
\& E_{k \max }=6.63 \times 10^{-34} \times 1.16 \times 10^{15}[\mathrm{~J}]-5.9 \times 10^{-19}[\mathrm{~J}] \tag{1}\\
\& E_{k \max }=1.79 \times 10^{-19}[\mathrm{~J}]
\end{align*}
\] \\
Photon energy < work function (1) don't accept photon energy in symbols. Accept not enough energy to liberate an electron. Don't accept \(E_{k \text { max }}\) can't be negative. \(E_{\text {phot }}=5.4 \times 10^{-19}[\mathrm{~J}]\) accept \(f_{\text {thresh }}=8.9 \times 10^{14}[\mathrm{~Hz}]\) (1) \\
If negative energy award 1 mark only \\
Planck constant. Accept Planck's constant or \(h\). \\
[-] work function. Accept \([-] \phi\). \\
\(f_{0}\) or minimum frequency to eject electron or threshold frequency \\
Question 5 Total
\end{tabular} \& \begin{tabular}{l}
1 \\
2 \\
2 \\
1 \\
1 \\
1 \\
[8]
\end{tabular} \\
\hline 6 \& (a)

(b) \& \begin{tabular}{l}
(i)

(ii)

(iii)

(iv)

 \&

Any $2 \times(1)$ from:

- Monochromatic or same frequency or same wavelength

- Wavefronts continuous or light in phase across width of beam

- Photons in phase

Use of $E=h f$ and $f=\frac{c}{\lambda}$ or $E=\frac{h c}{\lambda}(1)$

$$
\begin{equation*}
1.87 \times 10^{-19}[\mathrm{~J}] \tag{1}
\end{equation*}
$$

$$
1.3 \times 10^{20}\left[\mathrm{~s}^{-1}\right] \text { ecf }
$$

Downward arrow from U to L (1)

$$
\begin{equation*}
2.29 \times 10^{-19} \mathrm{~J}\left(\text { or } 2.3 \times 10^{-19} \mathrm{~J}\right) \tag{1}
\end{equation*}
$$

[Passing] photon stimulates electron to drop from U to L

Emitting another photon (1)

Any $2 \times(1)$ from:

- Process may happen repeatedly (or equivalent) as photons traverse cavity

- Population inversion [between U and L] needed for stimulated emission to predominate over absorption

- Pumping to P and drop to U brings about inversion

- Level L self-emptying so less pumping needed or population inversion easier to accomplish

- In phase with or travelling in the same direction as or polarised in the same direction as or identical to passing photon

- Stimulated photon must have an energy of $1.87 \times 10^{-19} \mathrm{~J}$ or equivalent

Question 6 Total

 \&

2

2

1

2

4

[11]
\end{tabular}

\hline
\end{tabular}

Question			Marking details	Marks Available
7	(a)	(i)	$\begin{aligned} & \lambda_{\text {peak }}=\frac{2.90 \times 10^{-3}}{9900}[\mathrm{~m}] \text { or equivalent } \\ & \lambda_{\text {peak }}=293 \times 10^{-9}[\mathrm{~m}] \end{aligned}$	2
		(ii)	Peak between 280 and 300 nm (1) Curve goes through origin [with zero gradient at origin] and is consistent with approaching zero at very long wavelengths (1)	2
		(iii)	Blue accept white or violet or purple	1
	(b)		$A=\frac{L}{\sigma T^{4}}$ with A as subject, with symbols or data or $1.84 \times 10^{19} \mathrm{~m}^{2}(1)$ Attempt to use $A=4 \pi r^{2}$ and $d=2 r$ or $A=\pi I^{2}$ (1) $d=2.4 \times 10^{9} \mathrm{~m}$ ecf on slips of 2^{n} or 10^{n} if already penalised (1)	3
	(c)	(i)	Absorption accept excitation Don't accept pumping	1
		(ii)	Dark / black lines crossing or missing wavelengths [continuous] spectrum or coloured background	1
		(iii)	B almost absent and any reference to populations of levels (1) First excited state not populated [so no transitions start here] or all electrons in ground state (1)	2
			Question 7 Total	[12]
8	(a)	(i)	$\begin{aligned} & \text { uud }+ \text { uud } \rightarrow \text { uud }+ \text { udd }(1) \\ & +\overline{-} \text { (1) } \end{aligned}$	2
		(ii)	$1+1>1+1+0$ (all numbers must be shown) or equivalent	1
		(iii)	Strong because no [photons (gammas) or] neutrinos or no flavour changes	1
		(iv)	Charge or momentum or energy or strangeness Accept up quark number or down quark number	1
	(b)	(i)	$0+0>0+(-1)+1$ (all numbers must be shown)	1
		(ii)	Weak interaction accept fusion (1) Takes place in the Sun [accept stars] (1) Part of the process whereby we get sunlight or energy or equivalent (1)	3
			Question 8 Total	[9]

